Journal of Dairy Science (Jul 2024)
How does a beef × dairy calving affect the dairy cow's following lactation?
Abstract
ABSTRACT: For beef semen usage on dairy cows, much of the research has focused on the performance of the crossbred calves, yet little focus has been given to the subsequent performance of the cow herself. This study aimed to evaluate the performance of dairy cows for milk yield, fertility, and survival traits after giving birth to beef × dairy crossbred calves and compare this with the performance after giving birth to purebred dairy calves. Further, we aimed to study if the effect of a difficult calving was the same regardless of whether the calf was purebred dairy or beef × dairy crossbred. Phenotypic records from 587,288 calving events from 1997 to 2020 were collected from the Swedish milk recording system from cows of the dairy breeds Swedish Red (SR) and Swedish Holstein. The sire beef breeds studied were Aberdeen Angus, Hereford (combined in category LHT), Charolais, Limousin, and Simmental (category HVY). Sixteen traits were defined and grouped in 3 categories: cumulative and 305-d milk, fat, and protein yield, daily milk yield, and 75-d milk yield as yield traits; calving to first insemination interval, calving to last insemination interval, first to last insemination interval, calving interval, and number of inseminations as fertility traits; and survival to 75 d or to next calving and lactation length as measures of survival. The data were analyzed for all traits for first and second parities separately using mixed linear models, with a focus on the estimates of cow breed by service sire breed combinations. All traits in parity 2 were adjusted for previous 305-d milk yield based on the expectation that low-yielding cows would more likely to be inseminated with beef semen. Overall, milk yield was lower after beef × dairy calvings compared with the purebred dairy calvings. The largest effects were found on cumulative yields and in second parity, with lower effects for yields early in lactation and yields in first parity. The largest decrease was 13 to 14 kg (0.12 phenotypic SD) for cumulative fat yield when breeding beef breed sires with purebred SR dams. For fertility traits, for most breed combinations, the effects were not large enough to be significant. Conversely, all beef × dairy crossbred combinations showed significantly lower results for survival to the next lactation, and mostly also for lactation length. There was some indication that dairy cows with beef × dairy calvings in parity 2 that were the result of maximum 2 inseminations in parity 1, had lower survival than corresponding calvings resulting from more than 2 inseminations. This could indicate that the former cows were marked for culling already when inseminated. There was generally an unfavorable effect of a difficult calving on all traits, however, there were almost no significant interactions between calving performance and dam by sire breed combination, and these interactions were never significant in first parity.