Nature Communications (Jan 2018)
Beyond a phenomenological description of magnetostriction
- A. H. Reid,
- X. Shen,
- P. Maldonado,
- T. Chase,
- E. Jal,
- P. W. Granitzka,
- K. Carva,
- R. K. Li,
- J. Li,
- L. Wu,
- T. Vecchione,
- T. Liu,
- Z. Chen,
- D. J. Higley,
- N. Hartmann,
- R. Coffee,
- J. Wu,
- G. L. Dakovski,
- W. F. Schlotter,
- H. Ohldag,
- Y. K. Takahashi,
- V. Mehta,
- O. Hellwig,
- A. Fry,
- Y. Zhu,
- J. Cao,
- E. E. Fullerton,
- J. Stöhr,
- P. M. Oppeneer,
- X. J. Wang,
- H. A. Dürr
Affiliations
- A. H. Reid
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory
- X. Shen
- Accelerator Division, SLAC National Accelerator Laboratory
- P. Maldonado
- Department of Physics and Astronomy, Uppsala University
- T. Chase
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory
- E. Jal
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory
- P. W. Granitzka
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory
- K. Carva
- Faculty of Mathematics and Physics, Department of Condensed Matter Physics, Charles University
- R. K. Li
- Accelerator Division, SLAC National Accelerator Laboratory
- J. Li
- Brookhaven National Laboratory
- L. Wu
- Brookhaven National Laboratory
- T. Vecchione
- Accelerator Division, SLAC National Accelerator Laboratory
- T. Liu
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory
- Z. Chen
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory
- D. J. Higley
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory
- N. Hartmann
- Linac Coherent Light Source, SLAC National Accelerator Laboratory
- R. Coffee
- Linac Coherent Light Source, SLAC National Accelerator Laboratory
- J. Wu
- Accelerator Division, SLAC National Accelerator Laboratory
- G. L. Dakovski
- Linac Coherent Light Source, SLAC National Accelerator Laboratory
- W. F. Schlotter
- Linac Coherent Light Source, SLAC National Accelerator Laboratory
- H. Ohldag
- Stanford Synchrotron Radiation Laboratory, SLAC National Accelerator Laboratory
- Y. K. Takahashi
- Magnetic Materials Unit, National Institute for Materials Science
- V. Mehta
- San Jose Research Center, HGST a Western Digital Company
- O. Hellwig
- San Jose Research Center, HGST a Western Digital Company
- A. Fry
- Linac Coherent Light Source, SLAC National Accelerator Laboratory
- Y. Zhu
- Brookhaven National Laboratory
- J. Cao
- Department of Physics and National High Magnetic Field Laboratory, Florida State University
- E. E. Fullerton
- Center for Memory and Recording Research, UC San Diego
- J. Stöhr
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory
- P. M. Oppeneer
- Department of Physics and Astronomy, Uppsala University
- X. J. Wang
- Accelerator Division, SLAC National Accelerator Laboratory
- H. A. Dürr
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory
- DOI
- https://doi.org/10.1038/s41467-017-02730-7
- Journal volume & issue
-
Vol. 9,
no. 1
pp. 1 – 9
Abstract
Although magnetostriction is universal in magnetic materials, understanding its microscopic origin remains challenging. Here the authors use X-ray and ultrafast electron diffraction to separate the material’s sub-picosecond spin and lattice responses and reveal the magnetoelastic stress generated by demagnetization.