Cellular Physiology and Biochemistry (Jun 2013)

Down-Regulation of TRPM8 in Pulmonary Arteries of Pulmonary Hypertensive Rats

  • Xiao-Ru Liu,
  • Qing Liu,
  • Gai-Ying Chen,
  • Ying Hu,
  • James S.K. Sham,
  • Mo-Jun Lin

DOI
https://doi.org/10.1159/000350107
Journal volume & issue
Vol. 31, no. 6
pp. 892 – 904

Abstract

Read online

Background: Pulmonary hypertension (PH) is characterized by profound vascular remodeling and alterations in Ca2+ homeostasis in pulmonary arterial smooth muscle cells (PASMCs). Multiple transient receptor potential melastatin-related (TRPM) subtypes have been identified in vascular tissue. However, the changes in the expression and function of TRPM channels in pulmonary hypertension have not been characterized in detail. Methods: We examined the expression of TRPM channels and characterized the functions of the altered TRPM channels in two widely used rat models of chronic hypoxia (CH)- and monocrotaline (MCT)-induced PH. Results: CH-exposed and MCT-treated rats developed severe PH and right ventricular hypertrophy, with a significant decrease in TRPM8 mRNA and protein expression in pulmonary arteries (PAs). The downregulation of TRPM8 was associated with significant reduction in menthol-induced cation-influx. Time-profiles showed that TRPM8 down-regulation occurred prior to the increase of right ventricular systolic pressure (RVSP) and right ventricular mass index (RVMI) in CH-exposed rats, but these changes were delayed in MCT-treated rats. The TRPM8 agonist menthol induced vasorelaxation in phenylephrine-precontracted PAs, and the vasorelaxing effects were significantly attenuated in PAs of both PH rat models, consistent with decreased TRPM8 expression. Conclusion: Downregulation of TRPM8 may contribute to the enhanced vasoreactivity in PH.

Keywords