BMC Plant Biology (Jul 2024)

A delayed response in phytohormone signaling and production contributes to pine susceptibility to Fusarium circinatum

  • Laura Hernandez-Escribano,
  • M. Teresa Morales Clemente,
  • David Fariña-Flores,
  • Rosa Raposo

DOI
https://doi.org/10.1186/s12870-024-05342-8
Journal volume & issue
Vol. 24, no. 1
pp. 1 – 17

Abstract

Read online

Abstract Background Fusarium circinatum is the causal agent of pine pitch canker disease, which affects Pinus species worldwide, causing significant economic and ecological losses. In Spain, two Pinus species are most affected by the pathogen; Pinus radiata is highly susceptible, while Pinus pinaster has shown moderate resistance. In F. circinatum-Pinus interactions, phytohormones are known to play a crucial role in plant defense. By comparing species with different degrees of susceptibility, we aimed to elucidate the fundamental mechanisms underlying resistance to the pathogen. For this purpose, we used an integrative approach by combining gene expression and metabolomic phytohormone analyses at 5 and 10 days post inoculation. Results Gene expression and metabolite phytohormone contents suggested that the moderate resistance of P. pinaster to F. circinatum is determined by the induction of phytohormone signaling and hormone rearrangement beginning at 5 dpi, when symptoms are still not visible. Jasmonic acid was the hormone that showed the greatest increase by 5 dpi, together with the active gibberellic acid 4 and the cytokinin dehydrozeatin; there was also an increase in abscisic acid and salicylic acid by 10 dpi. In contrast, P. radiata hormonal changes were delayed until 10 dpi, when symptoms were already visible; however, this increase was not as high as that in P. pinaster. Indeed, in P. radiata, no differences in jasmonic acid or salicylic acid production were found. Gene expression analysis supported the hormonal data, since the activation of genes related to phytohormone synthesis was observed earlier in P. pinaster than in the susceptible P. radiata. Conclusions We determine that the moderate resistance of P. pinaster to F. circinatum is in part a result of early and strong activation of plant phytohormone-based defense responses before symptoms become visible. We suggest that jasmonic acid signaling and production are strongly associated with F. circinatum resistance. In contrast, P. radiata susceptibility was attributed to a delayed response to the fungus at the moment when symptoms were visible. Our results contribute to a better understanding of the phytohormone-based defense mechanism involved in the Pinus-F. circinatum interactions and provide insight into the development of new strategies for disease mitigation.

Keywords