Journal of Petroleum Exploration and Production Technology (Oct 2020)

A predictive protocol to obtain maximum water-free oil production rate for perforated vertical wells

  • James O. Adeleye,
  • Olugbenga Olamigoke,
  • Oluseun T. Mumuni

DOI
https://doi.org/10.1007/s13202-020-01014-z
Journal volume & issue
Vol. 11, no. 1
pp. 347 – 357

Abstract

Read online

Abstract Producing an oilfield in a cost-effective way depends on how long water production could be delayed in the reservoir. Many flow mechanisms, correlations, and methods to calculate maximum water-free oil production rate have been published, However, those methods have generally failed to not consider the skin effect which affects the flow into the wellbore. In this paper, the semi-analytical perforation skin model as presented by Karakas and Tariq is incorporated into the Meyer and Garder correlation for critical oil rate from a perforated vertical well interval to obtain the maximum water-free oil production rate and optimal perforation parameters. The resulting coupled computational model is used to determine the sensitivity of the maximum water-free oil production rate to wellbore perforation parameters. Whilst an increase in perforation length and decrease in spacing between perforation increase the critical flow rate, an increase in perforation radius did not translate to higher productivity. The optimal perforation angles are 45° and 60°, however, for the data used in this work the maximum water-free oil rate of 23.2 std/d was obtained at 45° of phasing angle, 1 in of spacing between perforation, 0.36 in of perforation radius and 48 in of perforation length. Thus, the perforation strategy can be optimized prior to drilling and completion operations to improve productivity using the computational model presented in this work.

Keywords