Fractal and Fractional (Apr 2023)
Reproducing Kernel Hilbert Spaces of Smooth Fractal Interpolation Functions
Abstract
The theory of reproducing kernel Hilbert spaces (RKHSs) has been developed into a powerful tool in mathematics and has lots of applications in many fields, especially in kernel machine learning. Fractal theory provides new technologies for making complicated curves and fitting experimental data. Recently, combinations of fractal interpolation functions (FIFs) and methods of curve estimations have attracted the attention of researchers. We are interested in the study of connections between FIFs and RKHSs. The aim is to develop the concept of smooth fractal-type reproducing kernels and RKHSs of smooth FIFs. In this paper, a linear space of smooth FIFs is considered. A condition for a given finite set of smooth FIFs to be linearly independent is established. For such a given set, we build a fractal-type positive semi-definite kernel and show that the span of these linearly independent smooth FIFs is the corresponding RKHS. The nth derivatives of these FIFs are investigated, and properties of related positive semi-definite kernels and the corresponding RKHS are studied. We also introduce subspaces of these RKHS which are important in curve-fitting applications.
Keywords