Malaria Journal (Mar 2011)

<it>Plasmodium berghei </it>ANKA infection increases Foxp3, IL-10 and IL-2 in CXCL-10 deficient C57BL/6 mice

  • Stiles Jonathan K,
  • Bond Vincent C,
  • Wilson Nana O,
  • Sarfo Bismark Y

DOI
https://doi.org/10.1186/1475-2875-10-69
Journal volume & issue
Vol. 10, no. 1
p. 69

Abstract

Read online

Abstract Background Cerebral malaria (CM) is a major cause of malaria mortality. Sequestration of infected red blood cells and leukocytes in brain vessels coupled with the production of pro-inflammatory factors contribute to CM. CXCL-10 a chemokine that is chemotactic to T cells has been linked to fatal CM. Mice deficient for CXCL-10 gene are resistant to murine CM, while antibody ablation of CXCL-10 enhanced the production of regulatory T cells (CD4+Cd25+Foxp3+) and IL-10 which regulate the immune system. Interleukin-2 (IL-2), a pro-inflammatory cytokine implicated in malaria pathogenesis has also been shown to be a key regulator of Foxp3. However the role of Foxp3 in resistant murine CM is not well understood. Methods The hypothesis that resistance of CXCL-10-/- mice to murine CM may be due to enhanced expression of Foxp3 in concert with IL-10 and IL-2 was tested. CXCL-10-/- and WT C57BL/6 mice were infected with Plasmodium berghei ANKA and evaluated for CM symptoms. Brain, peripheral blood mononuclear cells (PBMCs) and plasma were harvested from infected and uninfected mice at days 2, 4 and 8. Regulatory T cells (CD4+CD25+) and non-T regs (CD4+CD25-) were isolated from PBMCs and cultured with P. berghei antigens in vitro with dendritic cells as antigen presenting cells. Regulatory T cell transcription and specific factor Foxp3, was evaluated in mouse brain and PBMCs by realtime-PCR and Western blots while IL-10, and IL-2 were evaluated in plasma and cultured supernatants by ELISA. Results Wild type mice exhibited severe murine CM symptoms compared with CXCL-10-/- mice. Foxp3 mRNA and protein in brain and PBMC's of CXCL-10-/- mice was significantly up-regulated (p P. berghei antigens produced more IL-10 than WT CD4+CD25+ T cells. Conclusion The results indicate that in the absence of CXCL-10, the resulting up-regulation of Foxp3, IL-10 and IL-2 may be involved in attenuating fatal murine CM.