Carbon Balance and Management (Sep 2024)

Exploring the role of canopy cover and environmental factors in shaping carbon storage in Desa’a forest, Ethiopia

  • Negasi Solomon,
  • Emiru Birhane,
  • Mulley Teklay,
  • Aklilu Negussie,
  • Tesfay Gidey

DOI
https://doi.org/10.1186/s13021-024-00277-x
Journal volume & issue
Vol. 19, no. 1
pp. 1 – 13

Abstract

Read online

Abstract Background Dry Afromontane forests play a vital role in mitigating climate change by sequestering and storing carbon, as well as reducing greenhouse gas emissions. Despite previous research highlighting the importance of carbon stocks in these ecosystems, the influence of canopy cover and environmental factors on carbon storage in dry Afromontane forests has been barely assessed. This study addresses this knowledge gap by investigating the effects of environmental factors and vegetation cover on carbon stocks in Desa’a forest, a unique and threatened Afromontane dry forest ecosystem in northern Ethiopia. Data on woody vegetation, dead litter, grass biomass, and soil samples were collected from 57 plots. A one-way analysis of variance (ANOVA) was performed at a 95% confidence level (α = 0.05) to examine the influence of canopy cover and environmental factors on the carbon stocks of various pools. Results Among the 35 woody species identified, Juniperus procera was the most dominant, while Carissa edulis Vahl and Eucalyptus globulus were the least dominant. The average total carbon stock was 92.89 Mg ha−1, with contributions from aboveground carbon, below-ground carbon, litter carbon, grass carbon, and soil organic carbon. Among the carbon pools, soil organic carbon had the highest carbon stock, accounting for 76.8% of the total, followed by above-ground biomass carbon at 17.7%. Significant variations in carbon stocks were found across altitude class and canopy level but not slope and aspect factors. Conclusions In summary, altitude and canopy level were found to significantly influence carbon stocks in Desa’a forest, providing valuable insights for conservation and climate change mitigation efforts in dry Afromontane forests. Forest intervention planning and management strategies should consider the influence of different environmental variables and tree canopy levels.

Keywords