Scientific Reports (Jul 2022)
Low-profile dual-band pixelated defected ground antenna for multistandard IoT devices
Abstract
Abstract A low-profile dual-band pixelated defected ground antenna has been proposed at 3.5 GHz and 5.8 GHz bands. This work presents a flexible design guide for achieving single-band and dual-band antenna using pixelated defected ground (PDG). The unique pixelated defected ground has been designed using the binary particle swarm optimization (BPSO) algorithm. Computer Simulation Technology Microwave Studio incorporated with Matlab has been utilized in the antenna design process. The PDG configuration provides freedom of exploration to achieve the desired antenna performance. Compact antenna design can be achieved by making the best use of designated design space on the defected ground (DG) plane. Further, a V-shaped transfer function based on BPSO with fast convergence allows us to efficiently implement the PDG technique. In the design procedure, pixelization is applied to a small rectangular region of the ground plane. The square pixels on the designated defected ground area of the antenna have been formed using a binary bit string, consisting of 512 bits taken during each iteration of the algorithm. The PDG method is concerned with the shape of the DG and does not rely on the geometrical dimension analysis used in traditional defected ground antennas. Initially, three single band antennas have been designed at 3.5 GHz, 5.2 GHz and 5.8 GHz using PDG technique. Finally, same PDG area has been used to design a dual-band antenna at 3.5 GHz and 5.8 GHz. The proposed antenna exhibits almost omnidirectional radiation performance with nearly 90% efficiency. It also shows dual radiation pattern property with similar patterns having different polarizations at each operational band. The antenna is fabricated on a ROGERS RO4003 substrate with 1.52 mm thickness. Reflection coefficient and radiation patterns are measured to validate its performance. The simulated and measured results of the antenna are closely correlated. The proposed antenna is suitable for different applications in Internet of Things.