The effect of polyphenols on DNA methylation-assessed biological age attenuation: the DIRECT PLUS randomized controlled trial
Anat Yaskolka Meir,
Maria Keller,
Anne Hoffmann,
Ehud Rinott,
Gal Tsaban,
Alon Kaplan,
Hila Zelicha,
Tobias Hagemann,
Uta Ceglarek,
Berend Isermann,
Ilan Shelef,
Matthias Blüher,
Michael Stumvoll,
Jun Li,
Sven-Bastian Haange,
Beatrice Engelmann,
Ulrike Rolle-Kampczyk,
Martin von Bergen,
Frank B. Hu,
Meir J. Stampfer,
Peter Kovacs,
Liming Liang,
Iris Shai
Affiliations
Anat Yaskolka Meir
The Health & Nutrition Innovative International Research Center, Faculty of Health Sciences, Ben-Gurion University of the Negev
Maria Keller
Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Center Munich at the University of Leipzig and University Hospital Leipzig
Anne Hoffmann
Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Center Munich at the University of Leipzig and University Hospital Leipzig
Ehud Rinott
The Health & Nutrition Innovative International Research Center, Faculty of Health Sciences, Ben-Gurion University of the Negev
Gal Tsaban
The Health & Nutrition Innovative International Research Center, Faculty of Health Sciences, Ben-Gurion University of the Negev
Alon Kaplan
The Health & Nutrition Innovative International Research Center, Faculty of Health Sciences, Ben-Gurion University of the Negev
Hila Zelicha
The Health & Nutrition Innovative International Research Center, Faculty of Health Sciences, Ben-Gurion University of the Negev
Tobias Hagemann
Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Center Munich at the University of Leipzig and University Hospital Leipzig
Uta Ceglarek
Institute of Laboratory Medicine, Clinical Chemistry, and Molecular Diagnostics, University of Leipzig Medical Center
Berend Isermann
Institute of Laboratory Medicine, Clinical Chemistry, and Molecular Diagnostics, University of Leipzig Medical Center
Ilan Shelef
Soroka University Medical Center
Matthias Blüher
Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Center Munich at the University of Leipzig and University Hospital Leipzig
Michael Stumvoll
Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Center Munich at the University of Leipzig and University Hospital Leipzig
Jun Li
Division of Preventive Medicine, Department of Medicine, Brigham and Women’s Hospital and, Harvard Medical School
Sven-Bastian Haange
Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research GmbH
Beatrice Engelmann
Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research GmbH
Ulrike Rolle-Kampczyk
Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research GmbH
Martin von Bergen
Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research GmbH
Frank B. Hu
Department of Epidemiology, Harvard T.H. Chan School of Public Health
Meir J. Stampfer
Department of Nutrition, Harvard T.H. Chan School of Public Health
Peter Kovacs
Medical Department III – Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, University of Leipzig
Liming Liang
Department of Epidemiology, Harvard T.H. Chan School of Public Health
Iris Shai
The Health & Nutrition Innovative International Research Center, Faculty of Health Sciences, Ben-Gurion University of the Negev
Abstract Background Epigenetic age is an estimator of biological age based on DNA methylation; its discrepancy from chronologic age warrants further investigation. We recently reported that greater polyphenol intake benefitted ectopic fats, brain function, and gut microbiota profile, corresponding with elevated urine polyphenols. The effect of polyphenol-rich dietary interventions on biological aging is yet to be determined. Methods We calculated different biological aging epigenetic clocks of different generations (Horvath2013, Hannum2013, Li2018, Horvath skin and blood2018, PhenoAge2018, PCGrimAge2022), their corresponding age and intrinsic age accelerations, and DunedinPACE, all based on DNA methylation (Illumina EPIC array; pre-specified secondary outcome) for 256 participants with abdominal obesity or dyslipidemia, before and after the 18-month DIRECT PLUS randomized controlled trial. Three interventions were assigned: healthy dietary guidelines, a Mediterranean (MED) diet, and a polyphenol-rich, low-red/processed meat Green-MED diet. Both MED groups consumed 28 g walnuts/day (+ 440 mg/day polyphenols). The Green-MED group consumed green tea (3–4 cups/day) and Mankai (Wolffia globosa strain) 500-ml green shake (+ 800 mg/day polyphenols). Adherence to the Green-MED diet was assessed by questionnaire and urine polyphenols metabolomics (high-performance liquid chromatography quadrupole time of flight). Results Baseline chronological age (51.3 ± 10.6 years) was significantly correlated with all methylation age (mAge) clocks with correlations ranging from 0.83 to 0.95; p < 2.2e − 16 for all. While all interventions did not differ in terms of changes between mAge clocks, greater Green-Med diet adherence was associated with a lower 18-month relative change (i.e., greater mAge attenuation) in Li and Hannum mAge (beta = − 0.41, p = 0.004 and beta = − 0.38, p = 0.03, respectively; multivariate models). Greater Li mAge attenuation (multivariate models adjusted for age, sex, baseline mAge, and weight loss) was mostly affected by higher intake of Mankai (beta = − 1.8; p = 0.061) and green tea (beta = − 1.57; p = 0.0016) and corresponded with elevated urine polyphenols: hydroxytyrosol, tyrosol, and urolithin C (p < 0.05 for all) and urolithin A (p = 0.08), highly common in green plants. Overall, participants undergoing either MED-style diet had ~ 8.9 months favorable difference between the observed and expected Li mAge at the end of the intervention (p = 0.02). Conclusions This study showed that MED and green-MED diets with increased polyphenols intake, such as green tea and Mankai, are inversely associated with biological aging. To the best of our knowledge, this is the first clinical trial to indicate a potential link between polyphenol intake, urine polyphenols, and biological aging. Trial registration ClinicalTrials.gov, NCT03020186.