International Journal of Alzheimer's Disease (Jan 2013)

Studies on Interaction of Buffalo Brain Cystatin with Donepezil: An Alzheimer's Drug

  • Fakhra Amin,
  • Bilqees Bano

DOI
https://doi.org/10.1155/2013/842689
Journal volume & issue
Vol. 2013

Abstract

Read online

When drugs bind to a protein, the intramolecular structures can be altered, resulting in conformational change of the protein. Donepezil, an Acetyl Cholinesterase inhibitor (AChE), is commonly prescribed to patients with Alzheimer's disease (AD) to enhance cholinergic neurotransmission. It is the “first-line” agents in the treatment of Alzheimer's disease used to improve cognitive function in the disease. In the present study, a cysteine protease inhibitor (cystatin) has been isolated from buffalo brain using alkaline treatment, 40 to 60% ammonium sulphate fractionation and gel filtration chromatography on Sephadex G-75 with % yield of 64.13 and fold purification of 384.7. The purified inhibitor (Buffalo Brain Cystatin, (BBC)) was eluted as a single papain inhibitory peak which migrated as single band on native PAGE; however, on SDS-PAGE with and without beta mercaptoethanol (βME) BBC gave two bands of M W 31.6 and 12.4 KDa, respectively. The molecular weight determined by gel filtration came out to be 43.6 KDa. The UV spectra of cystatin on interaction with donepezil suggested a conformational change in the protein. The fluorescence spectra of BC-donepezil composite show structural changes indicating 40 nm red shift with significant increase in fluorescence intensity of cystatin in the presence of donepezil representing an unfolding of cystatin on interaction, which is an indication of side effect of donepezil during the use of this drug.