AI-based strategies in breast mass ≤ 2 cm classification with mammography and tomosynthesis
Zhenzhen Shao,
Yuxin Cai,
Yujuan Hao,
Congyi Hu,
Ziling Yu,
Yue Shen,
Fei Gao,
Fandong Zhang,
Wenjuan Ma,
Qian Zhou,
Jingjing Chen,
Hong Lu
Affiliations
Zhenzhen Shao
Department of Breast Imaging, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Key Laboratory of Cancer Prevention and Therapy, Tianjin, PR China
Yuxin Cai
Department of Breast Imaging, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Key Laboratory of Cancer Prevention and Therapy, Tianjin, PR China
Yujuan Hao
Department of Breast Imaging, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Key Laboratory of Cancer Prevention and Therapy, Tianjin, PR China
Congyi Hu
Department of Breast Imaging, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Key Laboratory of Cancer Prevention and Therapy, Tianjin, PR China
Ziling Yu
Department of Breast Imaging, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Key Laboratory of Cancer Prevention and Therapy, Tianjin, PR China
Yue Shen
Department of Breast Imaging, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Key Laboratory of Cancer Prevention and Therapy, Tianjin, PR China
Fei Gao
School of Computer Science, Peking University, Beijing, PR China
Fandong Zhang
Deepwise AI Lab, Beijing, PR China
Wenjuan Ma
Department of Breast Imaging, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Key Laboratory of Cancer Prevention and Therapy, Tianjin, PR China
Qian Zhou
Department of Breast imaging, The affiliated Hospital of Qingdao University, Qingdao, PR China
Jingjing Chen
Department of Breast imaging, The affiliated Hospital of Qingdao University, Qingdao, PR China
Hong Lu
Department of Breast Imaging, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Key Laboratory of Cancer Prevention and Therapy, Tianjin, PR China; Corresponding author. Department of Breast Imaging, Tianjin Medical University Cancer Institute and Hospital, Huan Hu Xi Road, Ti Yuan Bei, He Xi District, 300060, Tianjin, PR China.
Purpose: To evaluate the diagnosis performance of digital mammography (DM) and digital breast tomosynthesis (DBT), DM combined DBT with AI-based strategies for breast mass ≤ 2 cm. Materials and methods: DM and DBT images in 483 patients including 512 breast masses were acquired from November 2018 to November 2019. Malignant and benign tumours were determined by biopsies using histological analysis and follow-up within 24 months. The radiomics and deep learning methods were employed to extract the breast mass features in images and finally for benign and malignant classification. The DM, DBT and DM combined DBT (DM + DBT) images were fed into radiomics and deep learning models to construct corresponding models, respectively. The area under the receiver operating characteristic curve (AUC) was employed to estimate model performance. An external dataset of 146 patients from March 2021 to December 2022 from another center was enrolled for external validation. Results: In the internal testing dataset, compared with the DM model and the DBT model, the DM + DBT models based on radiomics and deep learning both showed statistically significant higher AUCs [0.810 (RA-DM), 0.823 (RA-DBT) and 0.869 (RA-DM + DBT), P ≤ 0.001; 0.867 (DL-DM), 0.871 (DL-DBT) and 0.908 (DL-DM + DBT), P = 0.001]. The deep learning models present superior to the radiomics models in the experiments with only DM (0.867 vs 0.810, P = 0.001), only DBT (0.871 vs 0.823, P = 0.001) and DM + DBT (0.908 vs 0.869, P = 0.003). Conclusions: DBT has a clear additional value for diagnosing breast mass less than 2 cm compared with only DM. AI-based methods, especially deep learning, can help achieve excellent performance.