Beilstein Journal of Organic Chemistry (Oct 2021)

Direct C(sp3)–H allylation of 2-alkylpyridines with Morita–Baylis–Hillman carbonates via a tandem nucleophilic substitution/aza-Cope rearrangement

  • Siyu Wang,
  • Lianyou Zheng,
  • Shutao Wang,
  • Shulin Ning,
  • Zhuoqi Zhang,
  • Jinbao Xiang

DOI
https://doi.org/10.3762/bjoc.17.167
Journal volume & issue
Vol. 17, no. 1
pp. 2505 – 2510

Abstract

Read online

A base- and catalyst-free C(sp3)–H allylic alkylation of 2-alkylpyridines with Morita–Baylis–Hillman (MBH) carbonates is described. A plausible mechanism of the reaction might involve a tandem SN2’ type nucleophilic substitution followed by an aza-Cope rearrangement. Various alkyl substituents on 2-alkylpyridines were tolerated in the reaction to give the allylation products in 26–91% yields. The developed method provides a straightforward and operational simple strategy for the allylic functionalization of 2-alkypyridine derivatives.

Keywords