O presente trabalho tem como objetivo verificar a eficácia das técnicas de Redes Neurais Artificiais (RNA) e Random Forest (RF) no processo de reconstrução de séries temporais de precipitação mensal com falhas. O estudo foi aplicado em séries de estações pluviométricas distribuídas no Estado do Ceará, admitindo que as mesmas apresentam falhas, as quais são corrigidas em função das séries históricas de estações vizinhas. A eficácia das técnicas foi verificada dentro de um processo de validação cruzada. No geral, a Random Forest apresentou o melhor desempenho, superando a RNA em número de validações com coeficiente de Nash e Sutcliffe (NSE) superior a 0,75. Nas melhores validações, para ambos os modelos, encontraram-se valores de NSE acima de 0,9 para todas as estações base. O desempenho dos modelos na estação base 2 (EB2), onde obteve-se o melhor desempenho do estudo, apresenta um indicativo de que há uma melhor adaptação dos mesmos a anos com precipitações mais intensas.