Applied Sciences (Feb 2021)

3D Numerical Modeling of Rigid Inclusion-Improved Soft Soils Under Monotonic and Cyclic Loading—Case of a Small-Scale Laboratory Experiment

  • Hung Van Pham,
  • Daniel Dias

DOI
https://doi.org/10.3390/app11041426
Journal volume & issue
Vol. 11, no. 4
p. 1426

Abstract

Read online

This paper is based on small-scale laboratory tests (1:10) of a rigid inclusion-improved soil under normal gravity. A low area improvement ratio (2.4%) under monotonic and cyclic loading was used. 3D numerical calculations are performed to model these tests. The proposed numerical modeling is performed by the finite element method (FEM) using the ABAQUS software. A representative elementary volume model is suggested for reducing the calculation time. A hypoplastic constitutive model (HYP model) is applied for the load transfer platform (LTP). A total of three geometrical configuration cases of the experimental tests are numerically considered including a rigid slab over a mattress of 100 mm on the reinforced soil, a mattress of 100 mm on the reinforced soil, and a rigid slab over a mattress of 50 mm on the reinforced soil. The proposed numerical results are compared to the experimental data and the previous numerical results of Houda. The cyclic response of the systems is shown in terms of soil arching and settlements. The decrease in pile efficacy and the cumulative settlements are exhibited. The HYP model allows to better simulate the soil arching mechanisms inside the LTP than the CYsoil model used in the Houda’s research work. A good concordance between the proposed numerical results and the experimental data was obtained.

Keywords