Computational and Experimental Analysis of Gold Nanorods in Terms of Their Morphology: Spectral Absorption and Local Field Enhancement
Juan Manuel Núñez-Leyva,
Eleazar Samuel Kolosovas-Machuca,
John Sánchez,
Edgar Guevara,
Alexander Cuadrado,
Javier Alda,
Francisco Javier González
Affiliations
Juan Manuel Núñez-Leyva
Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología, Universidad Autónoma de San Luis Potosí, 550 Sierra Leona Ave, San Luis Potosí 78210, Mexico
Eleazar Samuel Kolosovas-Machuca
Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología, Universidad Autónoma de San Luis Potosí, 550 Sierra Leona Ave, San Luis Potosí 78210, Mexico
John Sánchez
Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología, Universidad Autónoma de San Luis Potosí, 550 Sierra Leona Ave, San Luis Potosí 78210, Mexico
Edgar Guevara
Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología, Universidad Autónoma de San Luis Potosí, 550 Sierra Leona Ave, San Luis Potosí 78210, Mexico
Alexander Cuadrado
Escuela Superior de Ciencias Experimentales y Tecnología, Universidad Rey Juan Carlos, C/ Tulipán s/n, Móstoles, 28933 Madrid, Spain
Javier Alda
Applied Optics Complutense Group, Faculty of Optics and Optometry, University Complutense of Madrid, 118 Arcos de Jalón Ave, 28037 Madrid, Spain
Francisco Javier González
Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología, Universidad Autónoma de San Luis Potosí, 550 Sierra Leona Ave, San Luis Potosí 78210, Mexico
A nanoparticle’s shape and size determine its optical properties. Nanorods are nanoparticles that have double absorption bands associated to surface plasmon oscillations along their two main axes. In this work, we analize the optical response of gold nanorods with numerical simulations and spectral absorption measurements to evaluate their local field enhancement—which is key for surface-enhanced Raman spectroscopic (SERS) applications. Our experimental results are in good agreement with finite element method (FEM) simulations for the spectral optical absorption of the nanoparticles. We also observed a strong dependence of the optical properties of gold nanorods on their geometrical dimension and shape. Our numerical simulations helped us reveal the importance of the nanorods’ morphology generated during the synthesis stage in the evaluation of absorption and local field enhancement. The application of these gold nanorods in surface-enhancement Raman spectroscopy is analyzed numerically, and results in a 5.8×104 amplification factor when comparing the values obtained for the nanorod deposited on a dielectric substrate compared to the nanorod immersed in water.