Beilstein Journal of Nanotechnology (Dec 2012)

Highly ordered ultralong magnetic nanowires wrapped in stacked graphene layers

  • Abdel-Aziz El Mel,
  • Jean-Luc Duvail,
  • Eric Gautron,
  • Wei Xu,
  • Chang-Hwan Choi,
  • Benoit Angleraud,
  • Agnès Granier,
  • Pierre-Yves Tessier

DOI
https://doi.org/10.3762/bjnano.3.95
Journal volume & issue
Vol. 3, no. 1
pp. 846 – 851

Abstract

Read online

We report on the synthesis and magnetic characterization of ultralong (1 cm) arrays of highly ordered coaxial nanowires with nickel cores and graphene stacking shells (also known as metal-filled carbon nanotubes). Carbon-containing nickel nanowires are first grown on a nanograted surface by magnetron sputtering. Then, a post-annealing treatment favors the metal-catalyzed crystallization of carbon into stacked graphene layers rolled around the nickel cores. The observed uniaxial magnetic anisotropy field oriented along the nanowire axis is an indication that the shape anisotropy dominates the dipolar coupling between the wires. We further show that the thermal treatment induces a decrease in the coercivity of the nanowire arrays. This reflects an enhancement of the quality of the nickel nanowires after annealing attributed to a decrease of the roughness of the nickel surface and to a reduction of the defect density. This new type of graphene–ferromagnetic-metal nanowire appears to be an interesting building block for spintronic applications.

Keywords