Scientific Reports (Jan 2024)
Object geometry serves humans’ intuitive physics of stability
Abstract
Abstract How do humans judge physical stability? A prevalent account emphasizes the mental simulation of physical events implemented by an intuitive physics engine in the mind. Here we test the extent to which the perceptual features of object geometry are sufficient for supporting judgments of falling direction. In all experiments, adults and children judged the falling direction of a tilted object and, across experiments, objects differed in the geometric features (i.e., geometric centroid, object height, base size and/or aspect ratio) relevant to the judgment. Participants’ performance was compared to computational models trained on geometric features, as well as a deep convolutional neural network (ResNet-50), none of which incorporated mental simulation. Adult and child participants’ performance was well fit by models of object geometry, particularly the geometric centroid. ResNet-50 also provided a good account of human performance. Altogether, our findings suggest that object geometry may be sufficient for judging the falling direction of tilted objects, independent of mental simulation.