Engineering Proceedings (Jan 2024)
Decisive Effect of Gas Metal Arc Welding-Based Additive Manufacturing on the Bead Profile, Microstructure and Tensile Properties of Ni-Cr-Mo Components
Abstract
This study focuses on metal inert gas welding for nickel alloy additive manufacturing using both cold metal transfer (CMT) and pulse multi control (PMT). For both single- and dual-bead deposition, the key parameters (current, travel speed, feed, weave, and height offset) were tuned. A hollow square component of 20 mm in height, 60 mm side length, and 16 mm width was created using these measurements. A macrostructural study demonstrated that flawless accuracy in geometry was attained by both PMT and CMT. In comparison to PMT, CMT specimens showed increased interlayer hardness but decreased hardness in the deposited layers. These changes were explained by modifications in eutectic phase size, distribution, and partial dissolution at the contact. For the wire arc additive manufacturing of nickel alloy components, pulse multi control is preferred over cold metal transfer.
Keywords