Journal of Applied Mathematics (Jan 2024)
A Hybrid GARCH and Deep Learning Method for Volatility Prediction
Abstract
Volatility prediction plays a vital role in financial data. The time series movements of stock prices are commonly characterized as highly nonlinear and volatile. This study is aimed at enhancing the accuracy of return volatility forecasts for stock prices by investigating the prediction of their price volatility through the integration of diverse models. Thus, the study integrated four powerful methods: seasonal autoregressive (AR) integrated moving average (MA), generalized AR conditional heteroskedasticity (ARCH) family models, convolutional neural network (CNN), and bidirectional long short-term memory (LSTM) network. The hybrid model was developed using the residuals generated by the seasonal AR integrated MA model as input for the generalized ARCH model. Following this, the estimated volatility obtained was utilized as an input feature for both the hybrid CNNs and bidirectional LSTM models. The model’s forecasting performance was assessed using key evaluation metrics, including mean absolute error (MAE) and root mean squared error (RMSE). Compared to other hybrid models, our new proposed hybrid model demonstrates an average reduction in MAE and RMSE of 60.35% and 60.61%, respectively. The experimental results show that the model proposed in this study has good performance and accuracy in predicting the volatility of stock prices. These findings offer valuable insights for financial data analysis and risk management strategies.