Proteome Science (Sep 2022)
A combined protein toxin screening based on the transcriptome and proteome of Solenopsis invicta
Abstract
Abstract Background Multi-omics technology provides a good tool to analyze the protein toxin composition and search for the potential pathogenic factors of Solenopsis invicta, under the great harm of the accelerated invasion in southern China. Methods Species collection, functional annotation, toxin screening, and 3D modeling construction of three interested toxins were performed based on the successfully constructed transcriptome and proteome of S. invicta. Results A total of 33,231 unigenes and 721 proteins were obtained from the constructed transcriptome and proteome, of which 9,842 (29.62%) and 4,844 (14.58%) unigenes, as well as 469 (65.05%) and 71 (99.45%) proteins were annotated against the databases of Gene Ontology and Kyoto Encyclopedia of Genes and Genomes, respectively. After comparing with the uniprot toxin database, a total of 316 unigenes and 47 proteins (calglandulin, venom allergen 3, and venom prothrombin activator hopsarin-D, etc.) were successfully screened. Conclusions The update of annotations at the transcriptome and proteome levels presents a progression in the comprehension of S. invicta in China. We also provide a protein toxin list that could be used for further exploration of toxicity as well as its antagonistic strategy by S. invicta.
Keywords