Neurobiology of Disease (Jul 2009)
Effects of high fat diet on Morris maze performance, oxidative stress, and inflammation in rats: Contributions of maternal diet
Abstract
This study was undertaken to investigate the effects of prenatal and postnatal exposure to high fat diet on the brain. Female rats were divided into high fat diet (HFD) and control diet (CD) groups 4 weeks prior to breeding and throughout gestation and lactation. After weaning, male progeny were placed on a chow diet until 8 weeks old, and then segregated into HFD or CD groups. At 20 weeks old, rats were evaluated in the Morris water maze, and markers of oxidative stress and inflammation were documented in the brain. In comparison to rats fed CD, cognitive decline in HFD progeny from HFD dams manifested as a decline in retention, but not acquisition, in the water maze. HFD was also associated with significant increases in 3-nitrotyrosine, inducible nitric oxide synthase, IL-6, and glial markers Iba-1 and GFAP, with the largest increases frequently observed in HFD animals born to HFD dams. Thus, these data collectively suggest that HFD increases oxidative and inflammatory signaling in the brain, and further indicate that maternal HFD consumption might sensitize offspring to the detrimental effects of HFD.