Agronomy (Apr 2021)

Exogenous Hemin Confers Cadmium Tolerance by Decreasing Cadmium Accumulation and Modulating Water Status and Matter Accumulation in Maize Seedlings

  • Xiaoming Liu,
  • Yao Meng,
  • Shi Wei,
  • Wanrong Gu

DOI
https://doi.org/10.3390/agronomy11040739
Journal volume & issue
Vol. 11, no. 4
p. 739

Abstract

Read online

Cadmium (Cd) contamination harms plant growth and human health. The application of hemin (ferroprotoporphyrin IX) can effectively relieve abiotic stresses in plants. This work investigates the effects of hemin on alleviating Cd toxicity and enhancing Cd tolerance in maize seedlings. In this study, maize seedlings were cultivated in nutrient solutions, with a combination of CdCl2 (464 μmol L−1) and hemin (100 μmol L−1). We measured plant growth status, water status, Cd concentration, and Cd distribution in maize seedlings. The results indicated that Cd stress increased Cd accumulation in plants and inhibited plant growth. However, hemin alleviated the growth inhibition and improved water balance, root morphology, and root vitality under Cd stress. Additionally, hemin increased 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA), total phenolic content, and phenylalanine ammonia lyase (PAL) activity to enhance tolerance to Cd stress. Hemin reduced Cd concentration, the translocation factor (TF), and the bioconcentration factor (BCF) in maize seedlings under Cd stress. Furthermore, hemin increased Cd concentrations in the cell wall and the soluble fraction of seedling roots, which helped reduce Cd transport from root to shoot. In summary, exogenous hemin could be used for alleviating adverse impacts on maize seedling induced by Cd stress.

Keywords