In this study, a strength gradient is produced in Al-Cu-Ca alloy foam by aging treatment with a temperature gradient. The microscopic results show that the morphology and the amount of Al2Cu strengthening precipitates in the base alloy change with the local aging temperature. Graded microstructures in the base alloy are realized along with the temperature gradient, subsequently producing the strength gradient in the Al-Cu-Ca foam. Under compression, the lower strength portion of the foam sample firstly collapsed until complete densification and then extended to the higher strength portion, suggesting a notable strength gradient. The tailorable graded aging treatment provided a higher degree of freedom in designing and producing the strength gradient in aluminum foam.