PLoS ONE (Jan 2012)
Molecular evidence for the thriving of Campylobacter jejuni ST-4526 in Japan.
Abstract
Campylobacter jejuni is a leading cause of human gastroenteritis worldwide. This study aimed at a better understanding of the genetic diversity of this pathogen disseminated in Japan. We performed multilocus sequence typing (MLST) of Campylobacter jejuni isolated from different sources (100 human, 61 poultry, and 51 cattle isolates) in Japan between 2005 and 2006. This approach identified 62 sequence types (STs) and 19 clonal complexes (CCs), including 11 novel STs. These 62 STs were phylogenetically divided into 6 clusters, partially exhibiting host association. We identified a novel ST (ST-4526) that has never been reported in other countries; a phylogenetic analysis showed that ST-4526 and related STs showed distant lineage from the founder ST, ST-21 within CC-21. Comparative genome analysis was performed to investigate which properties could be responsible for the successful dissemination of ST-4526 in Japan. Results revealed that three representative ST-4526 isolates contained a putative island comprising the region from Cj0737 to Cj0744, which differed between the ST-4526 isolates and the reference strain NCTC11168 (ST-43/CC-21). Amino acid sequence alignment analyses showed that two of three ST-4526 isolates expressed 693aa- filamentous hemagglutination domain protein (FHA), while most of other C. jejuni strains whose genome were sequenced exhibited its truncation. Correspondingly, host cell binding of FHA-positive C. jejuni was greater than that of FHA-truncated strains, and exogenous administration of rFHA protein reduced cell adhesion of FHA-positive bacteria. Biochemical assays showed that this putative protein exhibited a dose-dependent binding affinity to heparan sulfate, indicating its adhesin activity. Moreover, ST-4526 showed increased antibiotic-resistance (nalidixic acid and fluoroquinolones) and a reduced ability for DNA uptake. Taken together, our data suggested that these combined features contributed to the clonal thriving of ST-4526 in Japan.