Efficient trajectory and path planning (TPP) is essential for unmanned aircraft systems (UASs) autonomy in challenging environments. Despite the scale ambiguity inherent in monocular vision, characteristics like compact size make a monocular camera ideal for micro-aerial vehicle (MAV)-based UASs. This work introduces a real-time MAV system using monocular depth estimation (MDE) with novel scale recovery module for autonomous navigation. We present MoNA Bench, a benchmark for Monocular depth estimation in Navigation of the Autonomous unmanned Aircraft system (MoNA), emphasizing its obstacle avoidance and safe target tracking capabilities. We highlight key attributes—estimation efficiency, depth map accuracy, and scale consistency—for efficient TPP through MDE.