APL Materials (Feb 2022)
β-Gallium oxide power electronics
- Andrew J. Green,
- James Speck,
- Grace Xing,
- Peter Moens,
- Fredrik Allerstam,
- Krister Gumaelius,
- Thomas Neyer,
- Andrea Arias-Purdue,
- Vivek Mehrotra,
- Akito Kuramata,
- Kohei Sasaki,
- Shinya Watanabe,
- Kimiyoshi Koshi,
- John Blevins,
- Oliver Bierwagen,
- Sriram Krishnamoorthy,
- Kevin Leedy,
- Aaron R. Arehart,
- Adam T. Neal,
- Shin Mou,
- Steven A. Ringel,
- Avinash Kumar,
- Ankit Sharma,
- Krishnendu Ghosh,
- Uttam Singisetti,
- Wenshen Li,
- Kelson Chabak,
- Kyle Liddy,
- Ahmad Islam,
- Siddharth Rajan,
- Samuel Graham,
- Sukwon Choi,
- Zhe Cheng,
- Masataka Higashiwaki
Affiliations
- Andrew J. Green
- Air Force Research Laboratory, Wright Patterson Air Force Base, Ohio 45433, USA
- James Speck
- University of California, Santa Barbara, California 93106, USA
- Grace Xing
- Cornell University, Ithaca, New York 14850, USA
- Peter Moens
- ON Semiconductor, Oudenaarde 9700, Belgium
- Fredrik Allerstam
- ON Semiconductor, Oudenaarde 9700, Belgium
- Krister Gumaelius
- ON Semiconductor, Oudenaarde 9700, Belgium
- Thomas Neyer
- ON Semiconductor, Oudenaarde 9700, Belgium
- Andrea Arias-Purdue
- Teledyne, Thousand Oaks, California 91360, USA
- Vivek Mehrotra
- Teledyne, Thousand Oaks, California 91360, USA
- Akito Kuramata
- Novel Crystal Technology, Inc., Tokyo 100-0005, Japan
- Kohei Sasaki
- Novel Crystal Technology, Inc., Tokyo 100-0005, Japan
- Shinya Watanabe
- Novel Crystal Technology, Inc., Tokyo 100-0005, Japan
- Kimiyoshi Koshi
- Novel Crystal Technology, Inc., Tokyo 100-0005, Japan
- John Blevins
- Air Force Research Laboratory, Wright Patterson Air Force Base, Ohio 45433, USA
- Oliver Bierwagen
- Paul-Drude-Institut für Festkörperelektronik, Leibniz-Institut im Forschungsverbund, Berlin 10117, Germany
- Sriram Krishnamoorthy
- University of California, Santa Barbara, California 93106, USA
- Kevin Leedy
- Air Force Research Laboratory, Wright Patterson Air Force Base, Ohio 45433, USA
- Aaron R. Arehart
- Ohio State University, Columbus, Ohio 43210, USA
- Adam T. Neal
- Air Force Research Laboratory, Wright Patterson Air Force Base, Ohio 45433, USA
- Shin Mou
- Air Force Research Laboratory, Wright Patterson Air Force Base, Ohio 45433, USA
- Steven A. Ringel
- Ohio State University, Columbus, Ohio 43210, USA
- Avinash Kumar
- University at Buffalo, Buffalo, New York 14260, USA
- Ankit Sharma
- University at Buffalo, Buffalo, New York 14260, USA
- Krishnendu Ghosh
- University at Buffalo, Buffalo, New York 14260, USA
- Uttam Singisetti
- University at Buffalo, Buffalo, New York 14260, USA
- Wenshen Li
- University of California, Santa Barbara, California 93106, USA
- Kelson Chabak
- Air Force Research Laboratory, Wright Patterson Air Force Base, Ohio 45433, USA
- Kyle Liddy
- Air Force Research Laboratory, Wright Patterson Air Force Base, Ohio 45433, USA
- Ahmad Islam
- Air Force Research Laboratory, Wright Patterson Air Force Base, Ohio 45433, USA
- Siddharth Rajan
- Ohio State University, Columbus, Ohio 43210, USA
- Samuel Graham
- Georgia Institute of Technology, Atlanta, Georgia 30332, USA
- Sukwon Choi
- Penn State University, State College, Pennsylvania 16802, USA
- Zhe Cheng
- University of Illinois, Urbana-Champaign, Illinois 61801, USA
- Masataka Higashiwaki
- National Institute of Information and Communications Technology, Tokyo 184-8795, Japan
- DOI
- https://doi.org/10.1063/5.0060327
- Journal volume & issue
-
Vol. 10,
no. 2
pp. 029201 – 029201-40
Abstract
Gallium Oxide has undergone rapid technological maturation over the last decade, pushing it to the forefront of ultra-wide band gap semiconductor technologies. Maximizing the potential for a new semiconductor system requires a concerted effort by the community to address technical barriers which limit performance. Due to the favorable intrinsic material properties of gallium oxide, namely, critical field strength, widely tunable conductivity, mobility, and melt-based bulk growth, the major targeted application space is power electronics where high performance is expected at low cost. This Roadmap presents the current state-of-the-art and future challenges in 15 different topics identified by a large number of people active within the gallium oxide research community. Addressing these challenges will enhance the state-of-the-art device performance and allow us to design efficient, high-power, commercially scalable microelectronic systems using the newest semiconductor platform.