Biomedicine & Pharmacotherapy (Mar 2021)

Investigation of the molecular mechanism underlying the inhibitory activities of ethanol extract of Bombyx mori pupa-incubated Cordyceps militaris fruiting bodies toward allergic rhinitis

  • Ting-Feng Wu,
  • Wan-Yin Shi,
  • Yi-Chen Chiu,
  • Yu-Yi Chan

Journal volume & issue
Vol. 135
p. 111248

Abstract

Read online

Cordyceps militaris has been widely studied for its various pharmacological activities such as antitumor, anti-inflammation, and immune regulation. The binding of an allergen to IgE-sensitized mast cells in nasal mucosa triggers allergic rhinitis. We found that oral administration of 300 mg/kg of the ethanol extract prepared from silkworm pupa-cultivated Cordyceps militaris fruiting bodies significantly alleviated the symptoms of ovalbumin-induced allergic rhinitis in mice, including sneeze/scratch, mast cell activation, eosinophil infiltration, and Syk activation. The treatment of ethanol extract significantly suppressed the release of β-hexosaminidase (a degranulation marker) and mRNA expression levels of various cytokines, including IL-3, IL-10, and IL-13 in activated RBL2H3 cells. The ethanol extract and β-sitostenone, which was purified from the extract, could respectively reduce the Ca2+ ion mobilization in activated RBL-2H3 cells. Furthermore, results collected from western immunoblotting demonstrated that ethanol extract significantly retarded Ca2+ ion mobilization-initiated signaling cascade, which provoked the expression of various allergic cytokines. Also, the extract incubation interfered with P38 as well as NF-kB activation and Nrf-2 translocation. Our study suggested that ethanol extract possessed some natural constituents which could inhibit immediate degranulation and de novo synthesis of allergic cytokines via inhibition of Ca2+ ion mobilization in mast cells in the nasal mucosa of allergic rhinitis mice.

Keywords