Avicenna Journal of Environmental Health Engineering (Dec 2021)

The Use of Verbascum Thapsus L as a Biomembrane for Activated Sludge Filtration

  • Mohammed Saleh,
  • Hudaverdi Arslan,
  • Zelal Isik,
  • Mutlu Yalvac,
  • Nadir Dizge

DOI
https://doi.org/10.34172/ajehe.2021.13
Journal volume & issue
Vol. 8, no. 2
pp. 102 – 109

Abstract

Read online

Membrane technology is a green technology, but it still faces a pressing problem related to the effect of fabrication materials on the environment. The plant Verbascum thapsus L (VTL) was utilized as a biomembrane to reduce chemicals. In this study, VTL was successfully utilized as a membrane for activated sludge separation. The membrane was characterized via scanning electron microscopy (SEM)-EDX, Fourier transform infrared (FTIR), and contact angle measurement. Additionally, the effects of pressures on the fluxes and the rejection ability were studied. The permeability of the bio-based membrane reached 581 L/m2 .h.bar. The VTL membrane was examined for the removal of chemical oxygen demand (COD), protein, and carbohydrate. Accordingly, the maximum COD removal was obtained at a transmembrane pressure of 2.5 bar and reached up to 57%. The protein and carbohydrates rejections raised from 80% and 84% at 0.5 bar to 90% and 98% at 2.5 bar, respectively. The total resistance increased from 87% at a pressure of 0.5 bar to 96% at 2.5 bar. The flux recovery ratio (FRR) for the membrane at working pressures (0.5-2.5 bar) was 96% for 0.5 bar and 70% for 2.5 bar. The physical cleaning showed a flux recovery after three operation cycles. At the end of the filtration experiments, the pressure variation along streamlines over the membrane cross-section was simulated. As a result of this study, the use of a naturally-derived membrane is considered a green technology. The plant-based membrane reduces the use of non-green chemicals. Moreover, VTL has no commercial value and is recognized as an invasive plant species. All of the previous issues made the study worthwhile.

Keywords