Inorganics (Apr 2017)

Alkali and Alkaline Earth Metal Complexes Ligated by an Ethynyl Substituted Cyclopentadienyl Ligand

  • Tim Seifert,
  • Peter W. Roesky

DOI
https://doi.org/10.3390/inorganics5020028
Journal volume & issue
Vol. 5, no. 2
p. 28

Abstract

Read online

Sodium, potassium, and calcium compounds of trimethyl((2,3,4,5-tetramethylcyclopentadien-1-yl)ethynyl)silane (CpMe4(C≡CSiMe3)) were synthesized and characterized by X-ray diffraction and standard analytical methods. The sodium derivative was obtained by deprotonation of CpMe4(C≡CSiMe3)H with Na{N(SiMe3)2} to give a monomeric complex [NaCpMe4(C≡CSiMe3)(THF)3]. In a similar reaction, starting from K{N(SiMe3)2} the corresponding potassium compound [KCpMe4(C≡CSiMe3)(THF)2]n, which forms a polymeric super sandwich structure in the solid state, was obtained. Subsequently, salt metathesis reactions were conducted in order to investigate the versatility of the CpMe4(C≡CSiMe3)− ligand in alkaline earth chemistry. The reaction of [KCpMe4(C≡CSiMe3)(THF)2]n with CaI2 afforded the dimeric complex [CaCpMe4(C≡CSiMe3)I(THF)2]2, in which both CpMe4(C≡CSiMe3)Ca units are bridged by iodide in a μ2 fashion. In-depth NMR investigation indicates that [CaCpMe4(C≡CSiMe3)I(THF)2]2 is in a Schlenk equilibrium with [{CpMe4(C≡CSiMe3)}2Ca(THF)x] and CaI2(THF)2, as is already known for [CaCp*I(THF)2].

Keywords