PLoS ONE (Jan 2013)

Kinetics of IL-6 production defines T effector cell responsiveness to regulatory T cells in multiple sclerosis.

  • Bettina Trinschek,
  • Felix Luessi,
  • Jürgen Haas,
  • Brigitte Wildemann,
  • Frauke Zipp,
  • Heinz Wiendl,
  • Christian Becker,
  • Helmut Jonuleit

DOI
https://doi.org/10.1371/journal.pone.0077634
Journal volume & issue
Vol. 8, no. 10
p. e77634

Abstract

Read online

In multiple sclerosis (MS) autoaggressive T effector cells (Teff) are not efficiently controlled by regulatory T cells (Treg) but the underlying mechanisms are incompletely understood. Proinflammatory cytokines are key factors facilitating Teff activity in chronic inflammation. Here we investigated the influence of IL-6 on Treg sensitivity of Teff from therapy-naïve MS patients with or without active disease. Compared to healthy volunteers and independent of disease course CD4(+) and especially CD8(+) MS-Teff were insensitive against functional active Treg from healthy controls. This unresponsiveness was caused by accelerated production of IL-6, elevated IL-6 receptor expression and phosphorylation of protein kinase B (PKB)/c-Akt in MS-Teff. In a positive feedback loop, IL-6 itself induced its accelerated synthesis and enhanced phosphorylation of PKB/c-Akt that finally mediated Treg resistance. Furthermore, accelerated IL-6 release especially by CD8(+) Teff prevented control of surrounding Teff, described here as "bystander resistance". Blockade of IL-6 receptor signaling or direct inhibition of PKB/c-Akt phosphorylation restored Treg responsiveness of Teff and prevented bystander resistance. In Teff of healthy controls (HC) exogenous IL-6 also changed the kinetics of IL-6 production and induced Treg unresponsiveness. This modulation was only transient in Teff from healthy volunteers, whereas accelerated IL-6 production in MS-Teff maintained also in absence of IL-6. Hence, we showed that the kinetics of IL-6 production instead of elevated IL-6 levels defines the Teff responsiveness in early Treg-T cell communication in MS independent of their disease course and propose IL-6 and associated PKB/c-Akt activation as effective therapeutic targets for modulation of Teff activity in MS.