In this work, we evaluated the impact of disc rotors of gray cast iron (GCI), nitrocarburized (NC), and superhard ceramic-coated (SCC) GCI on the brake wear PM emissions of passenger vehicles using dynamometric measurements. The brake emission factor (BEF) of the SCC was greatly reduced by more than a factor of 1/5 compared with those for the GCI and NC for both low-steel and non-steel friction materials. Surface topological and microstructural analyses confirmed that more severe wear was pronounced for the NC rotor compared with the SCC, as evidenced by large concave pits in the wear tracks. Analysis of the size-classified airborne PM suggests that reduced micron-sized particles, which originated from the GCI disc, were responsible for the lower BEF due to the increased hardness of the SCC.