Mathematical Biosciences and Engineering (Jun 2021)

Second-order ResU-Net for automatic MRI brain tumor segmentation

  • Ning Sheng,
  • Dongwei Liu,
  • Jianxia Zhang ,
  • Chao Che,
  • Jianxin Zhang

DOI
https://doi.org/10.3934/mbe.2021251
Journal volume & issue
Vol. 18, no. 5
pp. 4943 – 4960

Abstract

Read online

Tumor segmentation using magnetic resonance imaging (MRI) plays a significant role in assisting brain tumor diagnosis and treatment. Recently, U-Net architecture with its variants have become prevalent in the field of brain tumor segmentation. However, the existing U-Net models mainly exploit coarse first-order features for tumor segmentation, and they seldom consider the more powerful second-order statistics of deep features. Therefore, in this work, we aim to explore the effectiveness of second-order statistical features for brain tumor segmentation application, and further propose a novel second-order residual brain tumor segmentation network, i.e., SoResU-Net. SoResU-Net utilizes a number of second-order modules to replace the original skip connection operations, thus augmenting the series of transformation operations and increasing the non-linearity of the segmentation network. Extensive experimental results on the BraTS 2018 and BraTS 2019 datasets demonstrate that SoResU-Net outperforms its baseline, especially on core tumor and enhancing tumor segmentation, illuminating the effectiveness of second-order statistical features for the brain tumor segmentation application.

Keywords