Molecular Therapy: Oncology (Mar 2024)

Empowering pancreatic tumor homing with augmented anti-tumor potency of CXCR2-tethered CAR-NK cells

  • Jong Hyeon Yoon,
  • Han-Na Yoon,
  • Hyun Ju Kang,
  • Hyejin Yoo,
  • Moon Jung Choi,
  • Joo-Yoon Chung,
  • Minkoo Seo,
  • Minsung Kim,
  • Si On Lim,
  • Yong Jun Kim,
  • Jin-Ku Lee,
  • Mihue Jang

Journal volume & issue
Vol. 32, no. 1
p. 200777

Abstract

Read online

Chimeric antigen receptor (CAR)-engineered natural killer (NK) cells are a promising immunotherapy for solid cancers; however, their effectiveness against pancreatic cancer is limited by the immunosuppressive tumor microenvironment. In particular, low NK cell infiltration poses a major obstacle that reduces cytotoxicity. The current study aimed to enhance the tumor-homing capacity of CAR-NK cells by targeting the chemokine-chemokine receptor axis between NK and pancreatic cancer cells. To this end, data from a chemokine array and The Cancer Genome Atlas pan-cancer cohort were analyzed. Pancreatic cancer cells were found to secrete high levels of ligands for C-X-C motif receptor 1 (CXCR1) and CXCR2. Subsequently, we generated anti-mesothelin CAR-NK cells incorporating CXCR1 or CXCR2 and evaluated their tumor-killing abilities in 2D cancer cell co-culture and 3D tumor-mimetic organoid models. CAR-NK cells engineered with CXCR2 demonstrated enhanced tumor killing and strong infiltration of tumor sites. Collectively, these findings highlight the potential of CXCR2-augmented CAR-NK cells as a clinically relevant modality for effective pancreatic cancer treatment. By improving their infiltration and tumor-killing capabilities, these CXCR2-augmented CAR-NK cells have the potential to overcome the challenges posed by the immunosuppressive tumor microenvironment, providing improved therapeutic outcomes.

Keywords