PLoS ONE (Jan 2014)

Hepatoprotective bioactivity of the glycoprotein, antrodan, isolated from Antrodia cinnamomea mycelia.

  • Yaw-Bee Ker,
  • Chiung-Chi Peng,
  • Wan-Lin Chang,
  • Charng-Cherng Chyau,
  • Robert Y Peng

DOI
https://doi.org/10.1371/journal.pone.0093191
Journal volume & issue
Vol. 9, no. 4
p. e93191

Abstract

Read online

Antrodan, a protein-bound polysaccharide isolated from Antrodia cinnamomea mycelia, was demonstrated to exhibit significant anti-inflammatory bioactivity in vitro. However, its role in hepatic injury in vivo still remains unclear. We hypothesized that antrodan may have beneficial hepatoprotective effects. To verify this, a lipopolysaccharide (LPS)-Sprague-Dawley rat model was used. Antrodan protected against liver damage by suppressing LPS-stimulated serum glutamine-oxaloacetic transaminase (GOT), glutamic-pyruvic transaminase (GPT), interleukin (IL)-6, hepatic thiobarbituric acid reactive substances (TBARS), nitric oxide (NO), inducible NO synthase (iNOS) and nuclear factor (NF)-κB, and by effectively alleviating the downregulated hepatic superoxide dismutase (SOD), catalase, and glutathione peroxidase (GSH-Px). Hematoxylin-eosin staining revealed that antrodan at a dosage of 40 mg/kg was able to alleviate LPS-induced liver damage to a normal status. In addition, we identified the partial main architectural backbone of antrodan to have a 1 → 3 linear β-glycosidic backbone of mannan linked by β-1 → 3 glucosidic branches. Conclusively, antrodan can potentially ameliorate liver damage in vivo by suppressing oxidative stress induced by LPS.