This paper aims to study the vibration of the large inertial platform from the Laser + Gamma building that is part of the ELI-NP project. In order to ensure a precisely positioned radiation beam, it is necessary that the shocks and vibrations coming from the external environment are damped or absorbed until they reach the work installations. This is ensured by the platform on which the devices are positioned, a platform that is supported on spring batteries and shock absorbers. A rigid body model is developed in this regard and a comparison with the finite element model of the concrete platform is conducted. It has been found that low vibration modes can be obtained with the help of the rigid model, which also has the advantage of simplicity and very little time is required to obtain results.