High Temperature Materials and Processes (Apr 2018)

A Novel Process for Joining Ti Alloy and Al Alloy using Two-Stage Sintering Powder Metallurgy

  • Long Luping,
  • Liu Wensheng,
  • Ma Yunzhu,
  • Wu Lei,
  • Liu Chao

DOI
https://doi.org/10.1515/htmp-2016-0161
Journal volume & issue
Vol. 37, no. 5
pp. 437 – 444

Abstract

Read online

The major challenges for conventional diffusion bonding of joining Ti alloy and Al alloy are the undesirable interfacial reaction, low matrixes and joint strength. To avoid the problem in diffusion bonding, a novel two-stage sintering powder metallurgy process is developed. In the present work, the interface characterization and joint performance of the bonds obtained by powder metallurgy bonding are investigated and are compared with the diffusion bonded Ti/Al joints obtained with the same and the optimized process parameters. The results show that no intermetallic compound is visible in the Ti/Al joint obtained by powder metallurgy bonding, while a new layer formed at the joint diffusion bonded with the same parameters. The maximum tensile strength of joint obtained by diffusion bonding is 58 MPa, while a higher tensile strength reaching 111 MPa for a bond made by powder metallurgy bonding. Brittle fractures occur at all the bonds. It is shown that the powder metallurgy bonding of Ti/Al is better than diffusion bonding. The results of this study should benefit the bonding quality.

Keywords