Metals (Aug 2021)
Hot Deformation Behaviors of as Cast 321 Austenitic Stainless Steel
Abstract
AISI 321 stainless steel has excellent resistance to intergranular corrosion and is generally used in nuclear power reactor vessels and other components. The as-cast and wrought structures are quite different in hot workability, so physical simulation, electron back-scatter diffraction, and hot processing maps were used to study the mechanical behavior and microstructure evolution of as-cast nuclear grade 321 stainless steel in the temperature range of 900–1200 °C and strain rate range of 0.01–10 s−1. The results showed that the flow curve presented work-hardening characteristics. The activation energy was calculated as 478 kJ/mol. The fraction of dynamic recrystallization (DRX) increased with increasing deformation temperature and decreasing strain rate. DRX grain size decreased with increasing Z value. Combining the hot working map and DRX state map, the suggested hot working window was 1000–1200 °C and 0.01–0.1 s−1. The main form of instability was necklace DRX. The nucleation mechanism of DRX was the migration of subgrains. The δ phase reduced the activation energy and promoted DRX nucleation of the tested steel.
Keywords