EPJ Web of Conferences (Jan 2020)
Fully Automated Light Precipitation Detection from MPLNET and EARLINET Network Lidar Measurements
Abstract
The water cycle strongly influence life on Earth and precipitation especially modifies the atmospheric column thermodynamics through the evaporation process and serving as a proxy for latent heat modulation. For this reason, a correct light precipitation parameterization at global scale, it is of fundamental importance, bedsides improving our understanding of the hydrological cycle, to reduce the associated uncertainty of the global climate models to correctly forecast future scenarios. In this context we developed a full automatic algorithm based on morphological filters that, once operational, will make available a new rain product for the NASA Micropulse Lidar Network (MPLNET) and the European Aerosol Research Lidar Network (EARLINET) in the frame of WMO GALION Project