Brain Sciences (Sep 2023)
Neuroimaging Study of Brain Functional Differences in Generalized Anxiety Disorder and Depressive Disorder
Abstract
Generalized anxiety disorder (GAD) and depressive disorder (DD) are distinct mental disorders, which are characterized by complex and unique neuroelectrophysiological mechanisms in psychiatric neurosciences. The understanding of the brain functional differences between GAD and DD is crucial for the accurate diagnosis and clinical efficacy evaluation. The aim of this study was to reveal the differences in functional brain imaging between GAD and DD based on multidimensional electroencephalogram (EEG) characteristics. To this end, 10 min resting-state EEG signals were recorded from 38 GAD and 34 DD individuals. Multidimensional EEG features were subsequently extracted, which include power spectrum density (PSD), fuzzy entropy (FE), and phase lag index (PLI). Then, a direct statistical analysis (i.e., ANOVA) and three ensemble learning models (i.e., Random Forest (RF), Light Gradient Boosting Machine (LightGBM), eXtreme Gradient Boosting (XGBoost)) were used on these EEG features for the differential recognitions. Our results showed that DD has significantly higher PSD values in the alpha1 and beta band, and a higher FE in the beta band, in comparison with GAD, along with the aberrant functional connections in all four bands between GAD and DD. Moreover, machine learning analysis further revealed that the distinct features predominantly occurred in the beta band and functional connections. Here, we show that DD has higher power and more complex brain activity patterns in the beta band and reorganized brain functional network structures in all bands compared to GAD. In sum, these findings move towards the practical identification of brain functional differences between GAD and DD.
Keywords