Atmospheric Chemistry and Physics (Sep 2018)

On the spectral depolarisation and lidar ratio of mineral dust provided in the AERONET version 3 inversion product

  • S.-K. Shin,
  • M. Tesche,
  • K. Kim,
  • M. Kezoudi,
  • B. Tatarov,
  • D. Müller,
  • Y. Noh

DOI
https://doi.org/10.5194/acp-18-12735-2018
Journal volume & issue
Vol. 18
pp. 12735 – 12746

Abstract

Read online

Knowledge of the particle lidar ratio (Sλ) and the particle linear depolarisation ratio (δλ) for different aerosol types allows for aerosol typing and aerosol-type separation in lidar measurements. Reference values generally originate from dedicated lidar observations but might also be obtained from the inversion of AErosol RObotic NETwork (AERONET) sun/sky radiometer measurements. This study investigates the consistency of spectral Sλ and δλ provided in the recently released AERONET version 3 inversion product for observations of undiluted mineral dust in the vicinity of the following major deserts: Gobi, Sahara, Arabian, Great Basin, and Great Victoria. Pure dust conditions are identified by an Ångström exponent < 0.4 and a fine-mode fraction < 0.1.The values of spectral Sλ are found to vary for the different source regions but generally show an increase with decreasing wavelength. The feature correlates to AERONET, retrieving an increase in the imaginary part of the refractive index with decreasing wavelength. The smallest values of Sλ = 35–45 sr are found for mineral dust from the Great Basin desert, while the highest values of 50–70 sr have been inferred from AERONET observations of Saharan dust. Values of Sλ at 675, 870, and 1020 nm seem to be in reasonable agreement with available lidar observations, while those at 440 nm are up to 10 sr higher than the lidar reference. The spectrum of δλ shows a maximum of 0.26–0.31 at 1020 nm and decreasing values as wavelength decreases. AERONET-derived δλ values at 870 and 1020 nm are in line with the lidar reference, while values of 0.19–0.24 at 440 nm are smaller than the independent lidar observations by a difference of 0.03 to 0.08. This general behaviour is consistent with earlier studies based on AERONET version 2 products.