Lipids in Health and Disease (Feb 2022)

Correlation of cholesteryl ester metabolism to pathogenesis, progression and disparities in colorectal Cancer

  • Zhirong Liu,
  • Christian R. Gomez,
  • Ingrid Espinoza,
  • Thuy Phuong T. Le,
  • Veena Shenoy,
  • Xinchun Zhou

DOI
https://doi.org/10.1186/s12944-022-01629-7
Journal volume & issue
Vol. 21, no. 1
pp. 1 – 9

Abstract

Read online

Abstract Background Colorectal cancer (CRC) is one of the most common cancers worldwide characterized by disparities in age, gender, race and anatomic sites. The mechanism underlying pathogenesis, progression and disparities of CRC remains unclear. This study aims to reveal the association of expression levels of enzymes related to cholesteryl ester (CE) metabolism with pathogenesis, progression and disparities of CRC. Methods The differences in gene expression levels were analyzed for enzymes in CE synthesis (acyl CoA: cholesterol acyltransferase 1 and 2, ACAT1, and ACAT2), and in CE hydrolysis (neutral cholesterol ester hydrolase, NCEH1 and lysosomal acid lipase, LAL) on TNMplot platform between CRC and normal colorectal tissues (NCT) in a large cohort. The differences in protein expression levels for these enzymes were determined by Immunochemistry (IHC) performed on tissue microarray containing 96 pairs of CRC and benign colorectal tissues (BCT) from different patient populations. The expression level represented as IHC score of each enzyme was compared between CRC and BCT in entire population and populations stratified by race, gender and anatomic sites. Student’s t-test, Fisher exact test and ANOVA were used for data analysis. Significant p value was set at P<0.05. Results The gene expression level of ACAT1 was significantly lower in CRC than in NCT (P = 2.15e-119). The gene expression level of ACAT2 was not statistically different between CRC and NCT. The gene expression level of LIPA (encoding LAL) was significantly higher in CRC than in NCT (P = 2.01e-14). No data was found for the gene expression level of NCEH1. The IHC score of ACAT1was significantly lower in CRC than in BCT in all studied populations and in sub site of colon, but not in that of rectum. The IHC score of ACAT2 was not statistically different between CRC and BCT. IHC score of NCEH1 was significantly higher in CRC than in BCT only in African American (AA) population. The IHC score of LAL was significantly higher in CRC than in BCT in all studied populations and in all sub sites. In addition, decreased ACAT1 in CRC significantly correlated to progression of CRC: the lower IHC score of ACAT1, the more advanced clinical stage of CRC will be. Conclusions This study revealed that altered expression levels in enzymes related to CE metabolism highly correlate to the pathogenesis, clinical progression and disparities of CRC. The results will add revenue in elucidating mechanisms underlying progression of CRC, and shed light on seeking biomarkers and exploring therapeutic targets for CRC in a new direction.

Keywords