Biology Open (Oct 2017)

An AMPK-dependent regulatory pathway in tau-mediated toxicity

  • Alessia Galasso,
  • Charles S. Cameron,
  • Bruno G. Frenguelli,
  • Kevin G. Moffat

DOI
https://doi.org/10.1242/bio.022863
Journal volume & issue
Vol. 6, no. 10
pp. 1434 – 1444

Abstract

Read online

Neurodegenerative tauopathies are characterised by accumulation of hyperphosphorylated tau aggregates primarily degraded by autophagy. The 5′AMP-activated protein kinase (AMPK) is expressed in most cells, including neurons. Alongside its metabolic functions, it is also known to be activated in Alzheimer's brains, phosphorylate tau, and be a critical autophagy activator. Whether it plays a neurotoxic or neuroprotective role remains unclear. In tauopathies stress conditions can result in AMPK activation, enhancing tau-mediated toxicity. Paradoxically, in these cases AMPK activation does not always lead to protective autophagic responses. Using a Drosophila in vivo quantitative approach, we have analysed the impact of AMPK and autophagy on tau-mediated toxicity, recapitulating the AMPK-mediated tauopathy condition: increased tau phosphorylation, without corresponding autophagy activation. We have demonstrated that AMPK binding to and phosphorylating tau at Ser-262, a site reported to facilitate soluble tau accumulation, affects its degradation. This phosphorylation results in exacerbation of tau toxicity and is ameliorated via rapamycin-induced autophagy stimulation. Our findings support the development of combinatorial therapies effective at reducing tau toxicity targeting tau phosphorylation and AMPK-independent autophagic induction. The proposed in vivo tool represents an ideal readout to perform preliminary screening for drugs promoting this process.

Keywords