IJAIN (International Journal of Advances in Intelligent Informatics) (Nov 2020)

Gabor-enhanced histogram of oriented gradients for human presence detection applied in aerial monitoring

  • Anton Louise Pernez De Ocampo,
  • Argel Bandala,
  • Elmer Dadios

DOI
https://doi.org/10.26555/ijain.v6i3.514
Journal volume & issue
Vol. 6, no. 3
pp. 223 – 234

Abstract

Read online

In UAV-based human detection, the extraction and selection of the feature vector are one of the critical tasks to ensure the optimal performance of the detection system. Although UAV cameras capture high-resolution images, human figures' relative size renders persons at very low resolution and contrast. Feature descriptors that can adequately discriminate between local symmetrical patterns in a low-contrast image may improve a human figures' detection in vegetative environments. Such a descriptor is proposed and presented in this paper. Initially, the acquired images are fed to a digital processor in a ground station where the human detection algorithm is performed. Part of the human detection algorithm is the GeHOG feature extraction, where a bank of Gabor filters is used to generate textured images from the original. The local energy for each cell of the Gabor images is calculated to identify the dominant orientations. The bins of conventional HOG are enhanced based on the dominant orientation index and the accumulated local energy in Gabor images. To measure the performance of the proposed features, Gabor-enhanced HOG (GeHOG) and other two recent improvements to HOG, Histogram of Edge Oriented Gradients (HEOG) and Improved HOG (ImHOG), are used for human detection on INRIA dataset and a custom dataset of farmers working in fields captured via unmanned aerial vehicle. The proposed feature descriptor significantly improved human detection and performed better than recent improvements in conventional HOG. Using GeHOG improved the precision of human detection to 98.23% in the INRIA dataset. The proposed feature can significantly improve human detection applied in surveillance systems, especially in vegetative environments.

Keywords