Calcium is a vital trace element for the human body, and its deficiency can result in a range of pathological conditions, including rickets and osteoporosis. Despite the numerous types of calcium supplements currently available on the market, these products are afflicted with a number of inherent deficiencies, such as low calcium content, poor aqueous solubility, and low human absorption rate. Many microorganisms, particularly beneficial microorganisms, including edible fungi, lactic acid bacteria, and yeast, are capable of absorbing and enriching calcium, a phenomenon that has been widely documented. This opens the door to the potential utilization of microorganisms as novel calcium enrichment carriers. However, the investigation of calcium-rich foods from microorganisms still faces many obstacles, including a poor understanding of calcium metabolic pathways in microorganisms, a relatively low calcium enrichment rate, and the slow growth of strains. Therefore, in order to promote the development of calcium-rich products from microorganisms, this paper provides an overview of the impacts of calcium addition on strain growth, calcium enrichment rate, antioxidant system, and secondary metabolite production. Additionally, it highlights calcium transport and enrichment mechanisms in microorganism cells and offers a detailed account of the progress made on calcium-binding proteins, calcium transport pathways, and calcium storage and release. This paper offers insights for further research on the relevant calcium enrichment in microorganism cells.