Clinical and Experimental Hypertension (Aug 2021)

Fumarate exerted an antihypertensive effect and reduced kidney injury molecule (KIM)-1 expression in deoxycorticosterone acetate-salt hypertension

  • Osaze Edosuyi,
  • Myung Choi,
  • Ighodaro Igbe,
  • Adebayo Oyekan

DOI
https://doi.org/10.1080/10641963.2021.1916943
Journal volume & issue
Vol. 43, no. 6
pp. 555 – 564

Abstract

Read online

Background: The tricarboxylic (TCA) acid cycle provides the energy needed for regulatory functions in the cardio-renal system. Recently, a genetic defect in the TCA cycle enzyme, fumarase hydratase, altered L-arginine metabolism and exacerbated hypertension in salt-sensitive rats. This study evaluated the effect of fumarate and its possible link to L-arginine metabolism in deoxycorticosterone (DOCA)-salt hypertension, a non-genetic model of hypertension.Method: Hypertension was induced with DOCA (25 mg/kg s.c, twice weekly) + 1% NaCL in uninephrectomised rats placed on fumarate (1 g/L, ad libitum). Blood pressure was measured in conscious rats via carotid cannulation. Biochemical and western blot analyses were carried out on kidney fractions.Results: Fumarate reduced mean blood pressure (198 ± 5 vs 167 ± 7 mmHg, p < .01), increased nitric oxide levels in the renal cortex (36.1 ± 2 vs 61.3 ± 4 nM/µg) and medulla (27.4 ± 1 vs 54.1 ± 2 nM/µg) of DOCA-salt rats (p < .01). Consistent with this, arginase activity was reduced (threefold) in the renal medulla but not cortex of DOCA-salt rats. Fumarate increased superoxide dismutase activity in the medulla (p < .001) of DOCA-hypertensive rats. However, catalase activity was exacerbated by fumarate in both renal cortex (4.5 ± 1 vs 11.2 ± 1) and medulla (3.7 ± 1 vs 16.3 ± 1 units/mg) of DOCA-salt rats (p < .001). Proteinuria (64.6%), kidney injury molecule-1 expression and kidney weight were reduced in DOCA-hypertensive rats treated with fumarate (p< .05). However, there was a paradoxical increase in TGF-β expression in fumarate-treated DOCA-salt rats. Conclusion: These data show that fumarate attenuated hypertension, renal injury and improved the redox state of the kidney in DOCA/salt hypertension by mechanisms involving selective reduction of L-arginine metabolism.

Keywords