BMC Microbiology (Jan 2011)

Induction kinetics of the <it>Staphylococcus aureus </it>cell wall stress stimulon in response to different cell wall active antibiotics

  • Berger-Bächi Brigitte,
  • Heusser Ronald,
  • Meier Patricia,
  • Dengler Vanina,
  • McCallum Nadine

DOI
https://doi.org/10.1186/1471-2180-11-16
Journal volume & issue
Vol. 11, no. 1
p. 16

Abstract

Read online

Abstract Background Staphylococcus aureus activates a protective cell wall stress stimulon (CWSS) in response to the inhibition of cell wall synthesis or cell envelope damage caused by several structurally and functionally different antibiotics. CWSS induction is coordinated by the VraSR two-component system, which senses an unknown signal triggered by diverse cell wall active agents. Results We have constructed a highly sensitive luciferase reporter gene system, using the promoter of sas016 (S. aureus N315), which detects very subtle differences in expression as well as measuring > 4 log-fold changes in CWSS activity, to compare the concentration dependence of CWSS induction kinetics of antibiotics with different cell envelope targets. We compared the effects of subinhibitory up to suprainhibitory concentrations of fosfomycin, D-cycloserine, tunicamycin, bacitracin, flavomycin, vancomycin, teicoplanin, oxacillin, lysostaphin and daptomycin. Induction kinetics were both strongly antibiotic- and concentration-dependent. Most antibiotics triggered an immediate response with induction beginning within 10 min, except for tunicamycin, D-cycloserine and fosfomycin which showed lags of up to one generation before induction commenced. Induction characteristics, such as the rate of CWSS induction once initiated and maximal induction reached, were strongly antibiotic dependent. We observed a clear correlation between the inhibitory effects of specific antibiotic concentrations on growth and corresponding increases in CWSS induction kinetics. Inactivation of VraR increased susceptibility to the antibiotics tested from 2- to 16-fold, with the exceptions of oxacillin and D-cycloserine, where no differences were detected in the methicillin susceptible S. aureus strain background analysed. There was no apparent correlation between the induction capacity of the various antibiotics and the relative importance of the CWSS for the corresponding resistance phenotypes. Conclusion CWSS induction profiles were unique for each antibiotic. Differences observed in optimal induction conditions for specific antibiotics should be determined and taken into account when designing and interpreting CWSS induction studies.