Energies (Jun 2023)
Photovoltaic Power Forecasting Using Multiscale-Model-Based Machine Learning Techniques
Abstract
The majority of energy sources being used today are traditional types. These sources are limited in nature and quantity. Additionally, they are continuously diminishing as global energy consumption increases as a result of population growth and industrial expansion. Their compensation is made from clean energy and renewable energy. Renewable energy is strongly dependent on climatic conditions; therefore, an aspect of energy management is needed, which is essential in distribution systems, because it enables us to calculate the precise energy used by the load as well as by its many components. It also helps us understand how much energy is required and its origin. The energy management aspect contains two main phases: forecasting and optimization. In this study, we are focused on the forecasting level using intelligent machine learning (ML) techniques. To ensure better energy management, it is very important to predict the production of renewable energy over a wide time period. In our work, several cases are proposed in order to predict the temperature, the irradiance, and the power produced by a PV system. The proposed approach is validated by an experimental procedure and a real database for a PV system. The big data from the sensors are noisy, which pose a major problem for forecasting. To reduce the impact of noise, we applied the multiscale strategy. To evaluate this strategy, we used different performance criteria, such as mean error (ME), mean absolute error (MAE), root mean square error (RMSE), nRMSE and the coefficient of determination (R2). The obtained experimental results show good performance with lower error. Indeed, they achieved an error for nRMSE criteria between 0.01 and 0.37.
Keywords