Einstein (São Paulo) (Sep 2024)

Cluster classification of a Brazilian gastric cancer cohort reveals remarkable populational differences in normal p53 rate

  • Fábio Ribeiro Queiroz,
  • Letícia da Conceição Braga,
  • Carolina Pereira de Souza Melo,
  • Matheus de Souza Gomes,
  • Laurence Rodrigues do Amaral,
  • Paulo Guilherme de Oliveira Salles

DOI
https://doi.org/10.31744/einstein_journal/2024ao0508
Journal volume & issue
Vol. 22

Abstract

Read online Read online

ABSTRACT Objective: Gastric adenocarcinoma remains an aggressive disease with a poor prognosis, as evidenced by a 5-year survival rate of approximately 31%. The histological classifications already proposed do not accurately reflect the high biological heterogeneity of this neoplasm, particularly in diverse populations, and new classification systems using genetic markers have recently been proposed. Following these newly proposed models, we aimed to assess the cluster distribution in a Brazilian cohort. Furthermore, we evaluated whether the inclusion of other clinical and histological parameters could enhance the predictive value. Methods: We used a previously described four-immunohistochemistry/EBER-ISH marker to classify a cohort of 30 Brazilian patients with gastric adenocarcinoma into five different clusters and compared the distribution with other genetically diverse populations. Furthermore, we used artificial intelligence methods to evaluate whether other clinical and pathological parameters could improve the results of the methodology. Results: Disclosing the genetic variability between populations, we observed a more balanced distribution of the aberrant/normal p53 ratio (0.6) between patients negative for the other markers tested, unlike previous studies with Asian and North American populations. In addition, decision tree analysis reinforced the efficiency of these new classifications, as the stratification accuracy was not altered with or without additional data. Conclusion: Our study underscores the importance of local research in characterizing diverse populations and highlights the complementary role of molecular biomarkers in personalized medicine for gastric adenocarcinoma, enhancing diagnostic accuracy and potentially improving survival rates.

Keywords