IEEE Photonics Journal (Jan 2022)

Band-Rejection Feedback for Chaotic Time-Delay Signature Suppression in a Semiconductor Laser

  • Song-Sui Li,
  • Xihua Zou,
  • Liyue Zhang,
  • Lin Jiang,
  • Longsheng Wang,
  • Anbang Wang,
  • Wei Pan,
  • Lianshan Yan

DOI
https://doi.org/10.1109/JPHOT.2022.3153640
Journal volume & issue
Vol. 14, no. 2
pp. 1 – 8

Abstract

Read online

Chaos generation from a semiconductor laser under band-rejection optical feedback is proposed and investigated numerically and experimentally. The band-rejection feedback performs better than the conventional broadband mirror feedback in concealing the feedback delay time information measured by the time-delay signature (TDS) of optical field and intensity. In this work, the optical band-rejection filter (BRF) is built up based on the transmission of a Bragg grating. The best concealment of delay time information is achieved in the form of simultaneous TDS suppression in optical field and intensity when the BRF is negatively detuned from the free-running laser frequency. Such concealment is due to the suppression of feedback cavity modes by the band-rejection effect. The concealment prefers negative detuning frequency because the laser cavity resonance is red-shifted by optical feedback due to the antiguidance effect. The negatively detuned BRF suppresses the TDS of optical field and intensity by more than an order of magnitude than mirror feedback. The simulation results are qualitatively confirmed by the experimental measurements.

Keywords